Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 357, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509542

RESUMO

BACKGROUND: This study compared the impact of thermal cycling on the flexural strength of denture-base materials produced through conventional and digital methods, using both subtractive and additive approaches. METHODS: In total, 60 rectangular specimens were fabricated with specific dimensions for flexural strength tests. The dimensions were set according to the International Organization for Standardization (ISO) guideline 20795-1:2013 as 64 × 10 × 3.3 ± 0.2 mm. Specimens from each material group were divided into two subgroups (thermal cycled or nonthermal cycled, n = 10/group). We used distinct methods to produce three different denture-base materials: Ivobase (IB), which is a computer-aided-design/computer-aided-manufacturing-type milled pre-polymerized polymethyl methacrylate resin disc; Formlabs (FL), a 3D-printed denture-base resin; and Meliodent (MD), a conventional heat-polymerized acrylic. Flexural strength tests were performed on half of the samples without a thermal-cycle procedure, and the other half were tested after a thermal cycle. The data were analyzed using a two-way analysis of variance and a post hoc Tukey test (α = 0.05). RESULTS: Based on the results of flexural-strength testing, the ranking was as follows: FL > IB > MD. The effect of thermal aging was statistically significant for the FL and IB bases, but not for the MD base. CONCLUSIONS: Digitally produced denture bases exhibited superior flexural strength compared with conventionally manufactured bases. Although thermal cycling reduced flexural strength in all groups, the decrease was not statistically significant in the heat-polymerized acrylic group.


Assuntos
Resistência à Flexão , Temperatura Alta , Humanos , Resinas Acrílicas , Bases de Dentadura , Teste de Materiais , Polimetil Metacrilato , Propriedades de Superfície
2.
BMC Oral Health ; 24(1): 334, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486195

RESUMO

BACKGROUND: The aim of the study was to determine and compare the biaxial flexural strength (BFS) and Vickers hardness (VHN) of additive and subtractive manufactured permanent composite-based restorative materials, before and after thermal aging. METHODS: A total of 200 specimens were prepared; 100 disc-shaped specimens (diameter 13 × 1.2 mm) for the BFS test and 100 square specimens (14 × 14 × 2 mm) for the VHN test. The specimens were made from various materials: two subtractive composite-based blocks (Cerasmart 270 [CS], Vita Enamic [VE]), two additive composite-based resins used for two different vat polymerization methods (digital light processing [DLP]; Saremco Print Crowntec [SC] and stereolithography [SLA]; Formlabs Permanent Crown Resin [FP]), and one feldspathic glass-matrix ceramic block (Vita Mark II [VM]) as the control group. Specimens of each material were divided into two subgroups: thermal cycled or non-thermal cycled (n = 10). BFS and VHN tests were performed on all groups. Data were analyzed with two-way ANOVA and post hoc Tukey test (α = 0.05). RESULTS: The type of restorative material used for the specimen had a statistically significant influence on both BFS and VHN values. However, thermal cycling did not affect the BFS and VHN values. After thermal cycling, the results of the BFS test were ranked from best to worst as follows: CS, FP, SC, VE, then VM. For the VHN values, the order from best to worst was as follows: VM, VE, CS, FP, then SC. CONCLUSIONS: 3D printed and milled composite groups showed higher BFS than feldspathic ceramics. When the VHN results were examined, it was seen that the 3D resin groups had the lowest VHN values. Furthermore, it was observed that the thermal cycle had no effect on BFS or VHN.


Assuntos
Cerâmica , Materiais Dentários , Humanos , Teste de Materiais , Resinas Compostas , Coroas , Desenho Assistido por Computador , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...